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Introduction
Sea ice extent and thickness affect the exchange of heat, energy, mass, and momentum between the atmosphere and the underlying ocean, and therefore play a significant role in weather and climate of

the polar regions. Sea ice also has profound socio-economic value due to its critical impact on transportation, hazards, recreation, fisheries, and hunting. Conventional observations of sea ice properties

are sparse, particularly sea ice thickness. Thus, satellite remote sensing data play a key role in estimating and monitoring changes in sea ice. With recent advances in remote sensing technology, it is

now possible to estimate ice thickness from space using a variety of techniques, each having advantages and disadvantages. The One-dimensional Thermodynamic Ice Model (OTIM) is an energy

budget approach for estimating sea and lake ice thickness with optical (visible, near-infrared, and infrared) satellite data from sensors such as the Advanced Very High Resolution Radiometer (AVHRR),

the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). A very different approach uses lidar or radar altimeter data from the ICESat and

CryoSat-2 satellites to measure ice elevation (freeboard), from which ice thickness can be estimated. Yet another method employs low-frequency microwave data from the Soil Moisture and Ocean

Salinity (SMOS) mission. The energy budget approach works best for thin to moderately thick ice, altimeters have limited coverage, and the passive microwave approach is for thin ice only. All

approaches are influenced by uncertainties in the depth of snow on the ice, surface melt, and other factors.

In this study we compared sea ice thicknesses from seven datasets: the Extended AVHRR Polar Pathfinder (APP-x), a similar product from MODIS, ICESat from the Jet Propulsion Lab, CryoSat-2 from

the Alfred Wegener Institute, SMOS from the University of Hamburg, and NASA IceBridge aircraft flights. Additionally, the satellite products are compared to ice thickness from the Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS). The intercomparison is complicated by the fact that the datasets cover different time periods and spatial resolutions, with the APP-x and PIOMAS having the

longest record (1982 – present). Comparisons are done for the period of overlap between all datasets, with PIOMAS as a reference data set. Preliminary results show that sea ice thickness from APPx,

MODIS, PIOMAS, CryoSat-2, and NASA IceBridge agree reasonably well overall, though there are important differences that arise from limitations of the different sensors and methods. SMOS appears to

underestimate the overall sea ice thickness, and ICESat likely overestimates sea ice thickness in coastal areas along Canadian archipelago.
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Conclusion

•The inter-comparison is complicated by the fact that the datasets cover different time periods and

spatial resolutions, with the APP-x and PIOMAS having the longest record (1982 – present).

Comparisons are done for the period of overlap between all datasets, with PIOMAS as a reference

data set. Results show that Biases relative to PIOMAS range from -0.3 (SMOS) to +0.5 (CryoSat-2,

ICESat, APP-x, MPP-x). SMOS is intended for thin ice estimates only. All products show thinning

Arctic sea ice since 1980.

•Trends range from less than 1 cm/year to 6 cm/year for some areas in the Arctic ocean. Multiyear ice

is far less prevalent now than 20 years ago. Young, thinner ice melts more easily, deforms much more

easily, moves faster, and is therefore exported more readily.
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